Chứng minh rằng: tích của 3 số tự nhiên liên tiếp chia hết cho 3

3.3 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 37)

Câu 26: Chứng minh rằng: tích của 3 số tự nhiên liên tiếp chia hết cho 3.

Lời giải:

Gọi tích của 3 số liên tiếp là:

A= a ∙ (a + 1) ∙ (a + 2) (a thuộc ℕ*)

Giả sử a A 3

Nếu a ko chia hết cho 3 thì có 2 khả năng: 3n + 1 hoặc 3n + 2

Với a = 3n + 1

a + 2 = (3n + 1) + 2 = 3n + 3

A 3 (1)

Với a = 3n + 2 

a +1 = 3n + 2 + 1 = 3n + 3  3

A chia hết 3 (2)

Vậy với mọi A thuộc N thì A  3 (điều đã được chứng minh).

Đánh giá

0

0 đánh giá