Cho tam giác ABC cân tại A, đường trung tuyến CM và BN. Trên tia đối của tia BA lấy điểm D sao cho BD = AB. Chứng minh CD = 2CM

348

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 37)

Câu 10: Cho tam giác ABC cân tại A, đường trung tuyến CM và BN. Trên tia đối của tia BA lấy điểm D sao cho BD = AB. Chứng minh CD = 2CM.

Lời giải:

Tài liệu VietJack

Gọi N là trung điểm cạnh AC. Suy ra BN là đường trung tuyến của ΔABC.

Vì ΔABC là tam giác cân tại A 

Nên BN = CM. (1)

Xét tam giác ΔACD có B, N lần lượt là trung điểm cạnh AD và AC.

BN là đường trung bình của tam giác của ΔACD.

BN = 12 DC DC = 2BN. (2)

Từ (1) và (2) suy ra CD = 2CM.

Đánh giá

0

0 đánh giá