Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm của OD và OB. Gọi E là giao điểm

2.1 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 37)

Câu 7: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB.

a, Chứng minh: Tứ giác AMCN là hình bình hành

b, Tứ giác AECF là hình gì?

c, Chứng minh: E, F đối xứng qua O

d, Chứng minh: EC = 2DE.

Lời giải:

Tài liệu VietJack

a,

Ta có ABCD là hình bình hành AC ∩ BD tại trung điểm mỗi đường

Mà AC ∩ BD = 0 O là trung điểm AC, DB

Lại có M, N là trung điểm OD, OB

OM = 12  OD = 12  OB = ON

  O là trung điểm MN

Do O là trung điểm AC, MN

AMCN là hình bình hành (đpcm).

b,

Ta có AMCN là hình bình hành.

AM // CN

AE // CF

Mà AB // CD AF // CE

AECF là hình bình hành.

c,

Ta có AECF là hình bình hành.

AC ∩ EF tại trung điểm mỗi đường

Mà O là trung điểm AC

O là trung điểm EF

E, F đối xứng nhau qua O (đpcm).

d,

Gọi G là trung điểm CE

Vì O là trung điểm AC OG là đường trung bình ∆ACE

OG // AE

ME // OG

Mà M là trung điểm DO ME là đường trung bình ∆ODG

E là trung điểm DG

DE = EG = GC

CE  = CG + GE = DE + DE = 2DE (đpcm).

Đánh giá

0

0 đánh giá