Cho tam giác ABC cân tại A, đường cao AD, trực tâm H. Tính độ dài AD biết AH = 14 cm

1.7 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 27)

Câu 28: Cho tam giác ABC cân tại A, đường cao AD, trực tâm H. Tính độ dài AD biết AH = 14 cm, BH = HC = 30 cm.

Lời giải:

Tài liệu VietJack

Gọi H’ là điểm đối xứng H qua BC.

Suy ra D là trung điểm của HH’

Vì tam giác ABC cân tại A, AD là đường cao nên AD là trung tuyến

Suy ra D là trung điểm của BC

Xét tứ giác BHCH’ có

D là trung điểm của HH’ và BC;

BC và HH’ là hai đường chéo

Suy ra BHCH’ là hình bình hành.

Mà BH = CH nên hình bình hành BHCH’ là hình thoi

Do đó BH’ // CH, BH = BH’.

Lại có CH ⊥ AB (vì H là trực tâm của tam giác ABC) nên BH’⊥ AB

Hay tam giác ABH’ vuông tại B

Mà BD ⊥ AH’

Suy ra H’B2 = H’D . H’A

⇔ HB2 = HD . (2HD + HA)

⇔ 302 = HD . (2HD + 14)

⇔ 2HD2 + 14HD – 900 = 0

⇔ (HD + 25)(HD – 18) = 0

⇔ HD – 18 = 0 (vì HD > 0)

⇔ HD = 18

Ta có AD = AH + HD = 14 + 18 = 32 cm

Vậy AD = 32 cm.

Đánh giá

0

0 đánh giá