Cho đường thẳng d1: y = 3mx – m^2 và d2: y = 3x + m – 2

1.3 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 27)

Câu 4: Cho đường thẳng d1: y = 3mx – m2 và d2: y = 3x + m – 2. Tìm m để d1 và d2 cắt nhau tại một điểm trên trục tung.

Lời giải:

Để d1 và d2 cắt nhau thì 3m ≠ 3 Û m ≠ 1.

Phương trình hoành độ giao điểm của d1 và d2 là:

3mx – m2 3x + m – 2

 (3m – 3)x = m2 + m – 2

x=m2+m23m3 (do m ≠ 1)

x=m1m+23m1=m+23

Để d1 và d2 cắt nhau tại một điểm trên trục tung thì hoành độ giao điểm bằng 0

m+23=0m=2tm

Vậy m = – 2.

Đánh giá

0

0 đánh giá