Chứng minh rằng tích của 4 số tự nhiên liên tiếp chia hết cho 24

1.5 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 24)

Câu 13: Chứng minh rằng tích của 4 số tự nhiên liên tiếp chia hết cho 24.

Lời giải:

Gọi 4 số tự nhiên liên tiếp là x; x + 1; x + 2; x + 3

 Ta có tích 4 số đó là x(x + 1)(x + 2)(x + 3).

Vì x(x+1) là tích 2 số liên tiếp nên chia hết cho 2

x(x+1)(x+2) là tích 3 số liên tiếp nên chia hết cho 3

x(x+1)(x+2)(x+3) là tích 4 số liên tiếp nên chia hết cho 4.

Mà 2.3.4 = 24 Þ x(x+1)(x+2)(x+3) là bội của 24.

Hay x(x+1)(x+2)(x+3) chia hết cho 24.

Đánh giá

0

0 đánh giá