Chứng minh rằng với mọi tập hợp A, B, C: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C

325

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 15)

Câu 29: Chứng minh rằng với mọi tập hợp A, B, C: A ∩ (B  C) = (A ∩ B)  (A ∩ C).

Lời giải:

Xét x  A ∩ (B  C)

 x  A và x  (B  C)

xAxBxCxAxBxAxCx(AB)AC*

Xét x  (A ∩ B)  (A ∩ C)

 x  A ∩ B hoặc x  A ∩ C

 x  A và x  B hoặc x  C

Tức là: x  A ∩ (B  C) (**)

Từ (*); (**) suy ra A ∩ (B  C) = (A .B)AC

Đánh giá

0

0 đánh giá