Cho f(x) = (m^2-3m+2)x^2 + 2(2-m)x-2(1). Tìm m để f(x) = 0 có 2 nghiệm dương phân biệt

210

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 14)

Câu 32: Cho fx=m23m+2x2+2(2m)x21 . Tìm m để f(x) = 0 có 2 nghiệm dương phân biệt.

Lời giải:

fx=m23m+2x2+2(2m)x21

Cho f(x) = 0. Để f(x) có 2 nghiệm dương phân biệt.

a0Δ'>0P>0S>0m23m+202m2m23m+22>02m23m+2>04+2mm23m+2>0m2;m144m+m2+2m26m+4>0m23m+2>01<m<2;m>2m2;m13m210m+8>0m<1;m>21<m<2;m>2m2,m1m<43,m>2m<1;m>21<m<2;m>2m<1m>2

Để f(x) = 0, f(x) có 2 nghiệm dương phân biệt

 m  (–∞; 1)  (2; +∞).

Đánh giá

0

0 đánh giá