Cho 2 điểm A(3; 0), B(0; 4). Phương trình đường tròn (C) có bán kính nhỏ nhất nội tiếp ∆OAB là

210

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 14)

Câu 14: Cho 2 điểm A(3; 0), B(0; 4). Phương trình đường tròn (C) có bán kính nhỏ nhất nội tiếp ∆OAB là ?

Lời giải:

Phương trình đường thẳng AB là: x3+y4=14x+3y12=0

Giả sử đường tròn (C) có tâm I(a; b).

Đường trong (C) nội tiếp ∆OAB, suy ra (C) có bán kính nhỏ nhất và tiếp xúc Ox, Oy, AB

 R = d(I, Ox) = d(I, Oy) = d(I, AB)

R=b=a=4a+3a1255a=7a12

TH1: Nếu a = b, ta có a=4a+3a1255a=7a12

5a=7a125a=127aa=6a=1

TH2: Nếu a – b, ta có a=4a3a1255a=a12

5a=a125a=12aa=3a=2

Vì (C) có bán kính nhỏ nhất nên chọn R = a=1

Suy ra (C) có tâm I(1; 1) và R = 1  (C): x12+y12=1

x2+y22x2y+1=0.

Đánh giá

0

0 đánh giá