Cho hàm số y = mx3 – mx2 – (m +4)x + 2. Xác định m để hàm số đã cho nghịch biến trên R

1.5 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 50)

Câu 19: Cho hàm số y = mx3 – mx2 – (m +4)x + 2. Xác định m để hàm số đã cho nghịch biến trên ℝ.

Lời giải:

Ta xét trường hợp hàm số suy biến. Khi m = 0, hàm số trở thành y = −x + 2. Đây là hàm bậc nhất nghịch biến trên ℝ. Vậy m = 0 thỏa mãn yêu cầu bài toán.

Với m ≠ 0, hàm số là hàm đa thức bậc 3.

Y’ = 3mx2 – 2mx2 – (m + 4)

Do đó hàm số nghịch biến trên ℝ khi và chỉ khi:

m<0Δ'0m<0m2+3mm+40m<04m2+12m0m<03m0m<03m0

  −3 ≤ m < 0.

Kết hợp 2 trường hợp ta được −3 ≤ m ≤ 0 0 thỏa mãn yêu cầu bài toán.

Đánh giá

0

0 đánh giá