Cho đa thức bậc ba P(x) thỏa mãn: P(x) chia cho x^2 + 2 dư 2x − 1

629

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 49)

Câu 39: Cho đa thức bậc ba P(x) thỏa mãn: P(x) chia cho x2 + 2 dư 2x − 1, chia cho x2 + x dư 16x − 11. Tính P(100).

Lời giải:

Ta có: P(x) chia cho x2 + 2 dư 2x – 1

P(x) = Q(x).(x2 + 2) + 2x – 1 (với Q(x) là đa thức bậc nhất)

P(x) = (ax + b)(x2 + 2) + 2x – 1

Vì P(x) chia x2 + x dư 16x – 11

P(x) – 16x + 11 chia hết cho x2 + x.

Đặt R(x) = P(x) – 16x + 11

Khi đó R(x) = (ax + b)(x2 + 2) – 14x + 10 chia hết cho x2 + x

Vì thế hai nghiệm x = 0 và x = −1 của x2 + x cũng là nghiệm của R(x), tức là:

a.0+b0+214.0+10=0a+b1+214.1+10=0

⇔ a=3b=5

P(x) = (3x – 5)(x2 + 2) + 2x – 1

Vậy P(100) = 2905789.

Đánh giá

0

0 đánh giá