Tìm giá trị thực của tham số m  để phương trình 9^x −2.3^x+1 + m = 0

611

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 49)

Câu 14: Tìm giá trị thực của tham số m  để phương trình 9x −2.3x+1 + m = 0 có hai nghiệm thực x1, x2  thỏa mãn x1 + x2 = 0.

Lời giải:

9x −2.3x+1 + m = 0 (1)

Đặt 3x = t, (t > 0)

Phương trình: t2 − 6t + m = 0 (2)

Để phương trình (1) có 2 nghiệm x1, x2  phân biệt thì phương trình (2) có 2 nghiệm t1, t2 cùng dương.

Δ'0S>0P>09m061>0  (tm)m1>0m9m>0

0 < m ≤ 9

Ta có: t1=3x1,  t2=3x2

t1t2=3x1.3x2=3x1+x2=30=1

Mà t1t2 = m nên m = 1

Vậy m = 1.

Đánh giá

0

0 đánh giá