Cho a^2(b + c) = b^2(c + a) = 2018 với a, b, c đôi một khác nhau và khác 0

202

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 46)

Câu 44: Cho a2(b + c) = b2(c + a) = 2018 với a, b, c đôi một khác nhau và khác 0. Tìm giá trị của biểu thức c2(a + b).

Lời giải:

Ta có: a2(b + c) = b2(c + a)

a2b + a2c = b2c + b2a

a2b −  b2a + a2c − b2c = 0

ab(a − b) + c(a2 − b2) = 0

ab(a − b) + c(a − b)(a + b) = 0

(a − b)[ab + c(a + b)] = 0

(a − b)[ab + c(a + b)] = 0

(a − b)(ab + bc + ca) = 0

Do a ≠ b ab + bc + ca = 0

Xét hiệu c2(a + b) − a2(b + c) = ac2 + bc2 − a2b − a2c

= ac(c − a) + b(c − a)(c + a)

= (c − a)(ac + bc + ab) = 0

Do đó: c2(a + b) = a2(b + c) = 2018

Đánh giá

0

0 đánh giá