Phân tích đa thức thành nhân tử: x^3 + y^3 + z^3 − 3xyz

345

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 46)

Câu 25: Phân tích đa thức thành nhân tử: x3 + y3 + z3 − 3xyz.

Lời giải:

x3 + y3 + z3 − 3xyz

= (x + y)33xy(x + y) + z33xyz

= (x + y)3 + z33xy(x + y)3xyz

= (x + y + z)[(x + y)2 z(x + y) + z2]3xy(x + y + z)

= (x + y + z)[(x + y)2 z(x + y) + z23xy]

= (x + y + z)(x2 + y2 + z2 xz yzxy).

Lý thuyết PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG

1. Khái niệm về phương pháp đặt nhân tử chung

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

Ứng dụng: Việc phân tích đa thức thành nhân tử giúp ta có thể thu gọc biểu thức, tính nhanh và giải phương trình dễ dàng.

2. Phương pháp đặt nhân tử chung

+ Khi tất cả các số hạng của đa thức có một thừa số chung, ta đặt thừa số chung đó ra ngoài dấu ngoặc () để làm nhân tử chung.

+ Các số hạng bên trong dấu () có được bằng cách lấy số hạng của đa thức chia cho nhân tử chung.

Chú ý: Nhiều khi để làm xuất hiện nhân tử chung ta cần đổi dấu các hạng tử.

( lưu ý tính chất: A = -(-A)).

Đánh giá

0

0 đánh giá