Trong không gian hệ tọa độ Oxyz cho mặt phẳng (P):  x – y + 2z – 2 = 0 và 2 điểm A (2; 3; 0); B (2; – 1; 2). Tìm điểm M

401

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 20)

Câu 43: Trong không gian hệ tọa độ Oxyz cho mặt phẳng (P):  x – y + 2z – 2 = 0 và 2 điểm A (2; 3; 0); B (2; – 1; 2). Tìm điểm M thuộc mặt phẳng (P) sao cho MAMB  lớn nhất.

Lời giải:

Đặt phương trình dạng: f = x – y + 2z – 2

 f(A) . f(B) = ( 2). 5 = 10 < 0 nên A, B nằm hai phía khác nhau so với mặt phẳng (P).

A’ là điểm đối xứng của A qua (P) có phương trinh đường thẳng AA’: x21=y31=z2

Gọi I là điểm đường thẳng AA’ và mặt phẳng (P) có: I (2 + t; 3 – t; 2t)  (P)

 t + 2 + t – 3 + 4t – 2 = 0

t=12

I52;  52;  1

  A’ (3; 2; 2).

MAMB=MA'MBA'B

MAMB=A'B  A’; B; M thẳng hàng.

Phương trình đường thẳng A’B: x=3+ay=2+3az=2

Mà M = A’B ∩ (P)

Vậy M=92;  132;  2 .

Đánh giá

0

0 đánh giá