Xét tính chẵn lẻ của hàm số: F(x) = sin^2007x + cos nx, với n ∈ ℤ: A. Hàm số chẵn

555

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 17)

Câu 30: Xét tính chẵn lẻ của hàm số:

F(x) = sin2007x + cos nx, với n ∈ ℤ:

A. Hàm số chẵn;

B. Hàm số lẻ;

C. Không chẵn không lẻ;

D. Vừa chẵn vừa lẻ.

Lời giải:

Đáp án đúng là: C

Hàm số có tập xác định: D = ℝ.

Suy ra ta có: x ∈ D thì –x ∈ D.

Ta có: f(-x) = sin2007(-x) + cos(−nx) =  −sin2007x + cos nx ±f(x)

Vậy hàm số đã cho là hàm số không chẵn không lẻ.

Đánh giá

0

0 đánh giá