Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh rằng: MA^2 + MC^2 = MB^2 + MD^2

1.3 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 17)

Câu 23: Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh rằng: MA2 + MC2 = MB2 + MD2.

Lời giải:

Tài liệu VietJack

Gọi K là giao điểm của hai đường chéo AC và BD suy ra K là trung điểm của AC và BD.

Trong ΔMAC  có:

MA2+MC2=2MK2+12AC2 (1) (công thức trung tuyến).

Trong ΔMBD MB2+MD2=2MK2+12BD2  (2) (công thức trung tuyến)

Mặt khác AC = BD (3) (đường chéo hình chữ nhật)

Từ (1) và (2), (3) suy ra MA2 + MC2 = MB2 + MD2 (đpcm).

Đánh giá

0

0 đánh giá