Cho phương trình (m + 1)x^2 + 2mx + m – 1 = 0 (*). Tìm m để phương trình có hai nghiệm

333

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 12)

Câu 33: Cho phương trình (m + 1)x2 + 2mx + m – 1 = 0 (*).

Tìm m để phương trình có hai nghiệm x1, x2 sao cho x12 + x22 = 5.

Lời giải:

Để phương trình có hai nghiệm phân biệt ta có:

Δ'>0a0m2(m+1)(m1)>0m1

m2m2+1>0m1m1.

Áp dụng định lý Vi−ét ta có: x1+x2=2mm+1x1.x2=m1m+1

Khi đó, ta có: x12 + x22 = 5  (x1 + x2)2 – 2x1x2 = 5

2mm+122m1m+1=5

 4m2 – 2(m – 1)(m + 1) = 5(m + 1)2

 4m2 – 2m2 + 2 = 5m2 + 10m + 5

 3m2 + 10m + 3 = 0

m=3m=13 (thỏa mãn điều kiện).

Vậy có hai giá trị của m thỏa mãn điều kiện m = −3; m=13.

Đánh giá

0

0 đánh giá