Cho tam giác ABC có hb + hc = 2ha. Chứng minh rằng: 1/sinb + 1/sinC = 2/sinA

2.4 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 7)

Câu 35: Cho tam giác ABC có hb + h= 2ha. Chứng minh rằng: 1sinB+1sinC=2sinA.

Lời giải:

Tài liệu VietJack

Ta có: hb + h= 2ha

2SABCb+2SABCc=4SABCa1b+1c=2a

Áp dụng định lý Sin trong tam giác ABC:

1sinB+1sinC=2Rb+2Rc=2R1b+1c; (R: bán kính đường tròn ngoại tiếp tam giác)

1sinB+1sinC=2R.2a=4Ra=2sinA.

Vậy 1sinB+1sinC=2sinA .

Định lí sin trong tam giác

Định lí sin: Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:

asinA=bsinB=csinC= 2R,

trong đó R là bán kính đường tròn ngoại tiếp tam giác ABC.

Từ định lí sin, ta có hệ quả sau đây:

Hệ quả:

a = 2R.sinA; b = 2R.sinB; c = 2R.sinC;

Đánh giá

0

0 đánh giá