Chứng minh rằng A =  x^4 + 2x^3 – x^2 – 2x chia hết cho 24 với mọi số nguyên x

370

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 51)

Câu 33: Chứng minh rằng A =  x4 + 2x3 – x2 – 2x chia hết cho 24 với mọi số nguyên x.

Lời giải:

Ta có: A =  x4 + 2x3 – x2 – 2x

= (x4 – x3) + (3x3 – 3x2) + (2x2 – 2x)

= x3(x – 1) + 3x2(x – 1) + 2x(x – 1)

= (x – 1)(x3 + 3x2 + 2x)

= (x – 1)x(x2 + x + 2x + 2)

= (x – 1)x[x(x + 1) + 2(x + 1)]

= (x – 1)x(x + 1)(x + 2).

Ta thấy x ∈ ℤ thì A là tích của 4 số liên tiếp nên chắc chắc A ⋮ 2; A ⋮ 3; A ⋮ 4.

Từ đó suy ra A ⋮ (2.3.4) hay A ⋮ 24 (đpcm).

Đánh giá

0

0 đánh giá