Cho ∆ABC có 3 góc nhọn, AH là đường cao. Vẽ HE vuông góc với AB tại E, HF vuông góc AC tại F

824

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 51)

Câu 21: Cho ∆ABC có 3 góc nhọn, AH là đường cao. Vẽ HE vuông góc với AB tại E, HF vuông góc AC tại F .

a) Chứng minh: AE.AB = AF.AC.

b) Cho BH = 3cm, AH = 4cm. Tính AE, BE.

Lời giải:

Tài liệu VietJack

a)  Xét ΔAHB vuông tại H, HE là đường cao nên ta có AH² = AE.AB

Xét ΔAHC vuông tại H, HF là đường cao nên ta có AH² = AF.AC

⇒ AE.AB = AF.AC

b) Xét ΔAHB vuông tại H. Áp dụng định lý Py-ta-go:

AB² = AH² + BH² = 16 + 9 = 25

⇒ AB = 5 (cm)

Có AH² = AE.AB ⇒ AE = 3,2 (cm)

Có BE = AB – AE = 5 – 3,2 = 1,8 (cm)

Đánh giá

0

0 đánh giá