Chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6

4.8 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 42)

Câu 18: Chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6.

Lời giải:

Gọi 3 số tự nhiên liên tiếp là n, n + 1, n + 2.

Tích của 3 số tự nhiên liên tiếp là n(n+1)(n+2)

Với n = 2k 2k(2k + 1)(2k + 2) chia hết cho 2

Với n = 2k + 1 (2k + 1)(2k + 2)(2k + 3) = (2k + 1).2(k + 1)(2k + 3) chia hết cho 2

n(n + 1)(n + 2) chia hết cho 2          (1)

Với n = 3k 3k(3k + 1)(3k + 2) chia hết cho 3

Với n = 3k + 1 (3k + 1)( 3k + 2).3(k + 1) chia hết cho 3

Với n = 3k + 2 (3k + 2)(3k + 3)(3k + 4) chia hết cho 3

n(n + 1)(n + 2) chia hết cho 3          (2)

Từ (1) và (2) suy ra n(n + 1)(n + 2) chia hết cho 6 (đpcm).

Đánh giá

0

0 đánh giá