Bạn cần đăng nhập để download tài liệu

Cho a, b, c là các số hữu tỉ thảo mãn điều kiện ab + bc + ca = 1

1.9 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 33)

Câu 24: Cho a, b, c là các số hữu tỉ thảo mãn điều kiện ab + bc + ca = 1. Chứng minh rằng biểu thức Q = (a2 + 1) (b2 + 1) (c2 + 1) là bình phương của một số hữu tỉ.

Lời giải:

Thay ab + bc + ca = 1 và Q ta được:

Q = ( a2 + ab + ac + bc) (b2 + ab + ac + bc) (c2 + ab + ac + bc)

= (a + b) (a + c) (b + c) (a + b) (a + c) (b + c)

= [(a + b) (a + c) (b + c)]2 là bình phương của một số hữu tỉ (đpcm).

Đánh giá

0

0 đánh giá