Biết đa thức f(x) = x3 + ax2 + bx + 2 chia cho x + 1 dư 5

312

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 52)

Câu 33: Biết đa thức f(x) = x3 + ax2 + bx + 2 chia cho x + 1 dư 5, chia cho x + 2 dư 8. Khi đó giá trị của a và b là bao nhiêu?

Lời giải:

Ta có: f(x) = x3 + ax2 + bx + 2 chia cho x + 1 dư 5

Suy ra f(x) – 5 chia hết cho x + 1

Hay x3 + ax2 + bx + 2 – 5 chia hết cho x + 1

Suy ra x3 + ax2 + bx – 3 chia hết cho x + 1

Do đó x = -1 là nghiệm của đa thức f(x)

Khi đó (-1)3 + a(-1)2 + b(-1) - 3 = 0

-1 + a – b – 3 = 0

a – b = 4 hay b = a – 4

Tương tự ta được f(x) – 8 chia hết cho x + 2

Hay x3 + ax2 + bx + 2 – 8 chia hết cho x + 2

Suy ra x3 + ax2 + bx – 6 chia hết cho x + 2

x = –2 là nghiệm của đa thức f(x)

(–2)3 + a(–2)2 + b(–2) – 6 = 0

–8 + 4a – 2b – 6 = 0

4a – 2b = 14

2a – b = 7

Thay b = a – 4 vào ta có:

2a – (a – 4) = 7

2a – a + 4 = 7

a + 4 = 7

a = 3

b = 3 – 4 = –1

Vậy (a; b) = (3; –1)

Đánh giá

0

0 đánh giá