Chứng minh rằng: n^2(n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n

377

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 25)

Câu 29: Chứng minh rằng: n2(n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n.

Lời giải:

Ta có: n2(n + 1) + 2n(n + 1)

= (n2 + 2n)(n + 1)

= n(n + 2)(n + 1)

Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2

Suy ra n(n + 1) ⋮ 2

Vì n; n + 1; n + 2 là ba số nguyên liên tiếp nên trong ba số đó có một số chia hết cho 3.

Suy ra n(n + 1)(n + 2)  3 mà ƯCLN(2, 3) = 1

Vậy n(n + 1)(n + 2)  2.3 hay n(n + 1)(n + 2)  6 n.

Đánh giá

0

0 đánh giá