Từ các chữ số 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau

306

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 83)

Câu 33: Từ các chữ số 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau sao cho hai chữ số 1 và 2 luôn đứng cạnh nhau?

Lời giải:

Xếp số 1 và 2 cạnh nhau có 2! = 2 (cách)

Coi cặp số 12 như một số, kết hợp với 3 số còn lại được 4 số, hoán vị chúng có:

4! = 24 (cách)

Mà 1 và 2 có thể đổi chỗ cho nhau nên vậy có:

2.24 = 48 số thỏa mãn.

Đánh giá

0

0 đánh giá