Cho x, y là các số thực không âm thỏa mãn: x^2 − 2xy + x − 2y ≤ 0. Tìm GTLN của M = x^2 − 5y^2 + 3x

161

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 82)

Câu 2: Cho x, y là các số thực không âm thỏa mãn: x2 − 2xy + x − 2y ≤ 0. Tìm GTLN của M = x2 − 5y2 + 3x.

Lời giải:

Ta có: x2 − 2xy + x − 2y ≤ 0

x(x − 2y) + (x − 2y) ≤ 0

(x − 2y)(x + 1) ≤ 0.

Mà do x, y là các số thực không âm nên x + 1 > 0.

Khi đó x − 2y ≤ 0 x ≤ 2y.

Với x, y là các số thực không âm nên ta có:

M = x2 − 5y2 + 3x ≤ (2y)2 − 5y2 + 3.(2y)

= −y2 + 6y = −y2 + 6y − 9 + 9

= −(y − 3)2 + 9 ≤ 9, y

Dấu “=” xảy ra y − 3 = 0 y = 3.

Vậy GTLN của M là 9 khi y = 3 và x = 2.3 = 6.

Đánh giá

0

0 đánh giá