Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng

446

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 76)

Câu 45: Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Lời giải:

Ta lập dãy số như sau:

Đặt B1 = a1

B2 = a1 + a2

B = a1 + a2 + a3

….

B10 = a1 + a2 + a3 + … + a10

Nếu tồn tại Bi (i = 1, 2, 3, …, 10) nào đó chia hết cho 10 thì bài toán được chứng minh

Nếu không tồn tại Bi thì:

Ta đem Bi chia cho 10 sẽ được 10 số dư (các số dư từ 1 đến 9), Theo nguyên tắc Dirichlet, phải có ít nhất 2 số dư bằng nhau.

Các số Bm – Bn chia hết cho 10 (m > n)

Vậy thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Đánh giá

0

0 đánh giá