Chứng minh rằng 2n^3 + 3n^2 + n chia hết cho 6 với mọi số nguyên n

177

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 76)

Câu 38: Chứng minh rằng 2n3 + 3n2 + n chia hết cho 6 với mọi số nguyên n.

Lời giải:

2n3 + 3n2 + n

= n (2n2 + 3n + 1)

= n (2n2 +2n + n + 1)

= n [2n (n + 1) + (n + 1)]

= n (n + 1) (2n + 1)

= n (n + 1) (2n – 2 + 3)

= n (n + 1) (2n – 2) + 3n (n + 1)

= 2n (n + 1) (n – 1) + 3n (n + 1)

Ta thấy: n – 1; n và n + 1 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 3.

Vì 2 2 nên 2n (n + 1) (n – 1) 2

Vậy 2n (n + 1) (n – 1) 6. (1)

Lại có: 3 3 nên 3n (n + 1) 3

Mà n, n + 1 là 2 số nguyên liên tiếp nên n (n + 1) 2

Vậy 3n (n + 1) 6. (2)

Từ (1) và (2) suy ra: 2n (n + 1) (n – 1) + 3n (n + 1) 6

Vậy 2n3 + 3n2 + n 6.

Đánh giá

0

0 đánh giá