Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:
Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 76)
Câu 12: Tìm số nguyên tố p để: 2p2 + 1 cũng là số nguyên tố.
Lời giải:
Với p = 2, ta có: 2p2 + 1 = 9 (loại vì không là số nguyên tố)
Với p = 3, ta có: 2p2 + 1 = 19 (thỏa mãn)
Với p > 3, vì p là số nguyên tố nên p có dạng p = 3k + 1 hoặc p = 3k + 2.
+ Nếu p = 3k + 1 thì 2p2 + 1 = 2(3k + 1)2 + 1 = 18k2 + 12k + 3 ⋮ 3
Suy ra: loại vì không là số nguyên tố
+ Nếu p = 3k + 2 thì 2p2 + 1 = 2(3k + 2)2 + 1 = 18k2 + 24k + 9 ⋮ 3
Suy ra: loại vì không là số nguyên tố
Vậy p = 3.
Xem thêm các nội dung khác: