Các số thực a,b,c,d thỏa mãn đồng thời các điều kiện abc – d = 1, bcd – a = 2, cda – b = 3

383

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 71)

Câu 4: Các số thực a,b,c,d thỏa mãn đồng thời các điều kiện abc – d = 1, bcd – a = 2, cda – b = 3 và dab – c = –6. Chứng minh: a + b + c + d    0.

Lời giải:

Giả sử a + b + c + d = 0 b + c = −(a + d)

Cộng từng vế các điều kiện trên ta được

abc + bcd + cda + dab − (a + b + c + d) = 0

abc + bcd + cda + dab = 0

bc(a + d) + ad(b +c) = 0

bc(a + d) − ad(a + d) = 0

(a + d)(bc − ad) = 0

TH1: a + d = 0

Từ : abc – d = 1,bcd – a = 2, ta cộng lại ta được

abc + bcd−(a + d) = 3

bc(a + d)−(a + d) = 3

(a + d)(bc − 1) = 3

0 = 3 (Vô lí)

Th2 : bc – ad = 0

Nếu b = 0 a + c + d = 0(1)

Từ abc –d = 1 0 −d = 1 d = −1

Từ bcd – a =2 a = −2

Từ dab – c =−6 c = 6

Lúc này  a + c + d = − 2 + 6 + (−1) = 3 ≠ 0 (Trái với (1)

Do đó b ≠ 0, tương tự d ≠ 0

Từ bc – ad = 0 ab = cd (b, d ≠ 0)

Áp dụng tính chất dãy tỉ số bằng nhau

⇒ ab=cd=a+cb+d=b+db+d=1

a = −b a + b = 0

Tương tụ như với a + d = 0 Vô lí

Vậy a + b + c + d ≠ 0 (đpcm).

Đánh giá

0

0 đánh giá