Cho dãy số (un) bởi: u1 = 1 và un+1 = 5un + 8 với mọi n ≥ 1

436

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 70)

Câu 6: Cho dãy số (un) bởi: u1 = 1 và un+1 = 5un + 8 với mọi n ≥ 1.

a) Chứng minh rằng dãy số (vn) với vn = un +2 là một cấp số nhân.

b) Dựa vào kết quả phần a) hãy tìm số hạng tổng quát của dãy số (un).

 Lời giải:

Ta có: un+1 = 5un + 8

vn = un + 2

Suy ra: vn+1 = un+1 + 2 = 5un + 8 + 2 = 5un + 10 = 5(un + 2) = 5vn (*)

Vậy vn là cấp số nhân với công bội q = 5.

b) Từ (*) ta có:

v1 = u1 + 2 = 1 + 2 = 3

v2 = 5v1 = 5.3 = 15

vn = 5vn–1

Số hạng tổng quát của vn là: vn = u1.qn–1 = 3.5n–1

un = vn – 2 =  3.5n–1 – 2.

Đánh giá

0

0 đánh giá