Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0

389

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 63)

Câu 8: Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6).

Lời giải:

P(1) = 0; P(3) = 0; P(5) = 0 nên 1 ; 3 ; 5 lần lượt là nghiệm của phương trình nên

P(x) chứa nhân tử (x – 1); (x – 3); (x – 5)

Vì P(x) bậc 4 có hệ số bậc cao nhất là một nên P(x) có dạng:

P(x) = (x – 1)(x – 3)(x – 5)(x – a)

Q = P(–2) + 7P(6)

= (–2 – 1)( –2 – 3)( –2 – 5)( –2 – a) + 7(6 – 1)(6 – 3)(6 – 5)(6 – a)

= 210 + 105a + 7(90 - 15a)

= 210 + 105a + 630 - 105a

= 840

 
Đánh giá

0

0 đánh giá