Khai triển đa thức P(x) = (2x – 1)^1000 ta được P(x) = a(1000).x^1000 + a(999).x^999 + … + a(1).x + a(0)

352

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 61)

Câu 23: Khai triển đa thức P(x) = (2x – 1)1000 ta được P(x) = a1000 x1000 + a999 x999 + … + a1x + a0.

Lời giải:

Ta có

P(x) = a1000 x1000 + a999 x999 + … + a1x + a0

Cho x = 1 ta được

P(1) = a1000 + a999 + … + a1 + a0

Mặt khác

P(x) = (2x – 1)1000

Do đó P(1) = (2 . 1 – 1)1000 = 1

Từ đó suy ra P(1) = a1000 + a999 + … + a1 + a0 = 1

Do đó a1000 + a999 + … + a1 = 1 – a0

Mà là số hàng không chứa x trong khai triển P(x) = (2x – 1)1000

Nên a0=C10001000(2x)0(1)1000=1.

Vậy a1000 + a999 + … + a1 = 0.

 
Đánh giá

0

0 đánh giá