Cho a, b, c là các số không âm thỏa mãn: a + b + c = 1. Chứng minh rằng: b + c ≥ 16abc

181

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 60)

Câu 46: Cho a, b, c là các số không âm thỏa mãn: a + b + c = 1. Chứng minh rằng:

b + c ≥ 16abc.

Lời giải:

Áp dụng BĐT Cauchy, ta có:

(a + b + c)2 ≥ 4a(b + c)

(b + c)2 ≥ 4bc

Nhân từng vế, ta có: (a + b + c)2 . (b + c)2 ≥ 4a(b + c) . 4bc.

Do đó b + c ≥ 16bc.

Dấu “=” xảy ra khi và chỉ khi a=12b=c=14 .

Vậy b + c ≥ 16abc (đpcm).

 
Đánh giá

0

0 đánh giá