Tìm số tự nhiên n để số p là số nguyên tố biết p = n^3 − n^2 + n – 1

341

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 60)

Câu 37: Tìm số tự nhiên n để số p là số nguyên tố biết p = n3 − n2 + n – 1.

Lời giải:

Ta có: p = n3 − n2 + n − 1 = n2(n − 1) + (n − 1) = (n − 1)(n2 + 1)

Để tích của hai số tự nhiên là một số nguyên tố thì một trong hai thừa số phải bằng 1.

• TH1: n − 1 = 1 n = 2

p = (2 − 1)(22 + 1) = 5 là số nguyên tố

Vậy n = 2 thỏa mãn.

• TH2: n2 + 1 = 1 n = 0

p = (0 − 1)(0 + 1) = −1 không là số nguyên tố

Vậy n = 0 không thỏa mãn.

Vậy số tự nhiên n cần tìm là n = 2

Khi đó, p = 5 là số nguyên tố.

 
Đánh giá

0

0 đánh giá