Tìm số dư của phép chia (x + 2)(x + 3)(x + 4)(x + 5) + 2020 cho x^2 + 7x + 5

433

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 60)

Câu 3: Tìm số dư của phép chia (x + 2)(x + 3)(x + 4)(x + 5) + 2020 cho x2 + 7x + 5.

Lời giải:

Ta có: A = (x + 2)(x + 3)(x + 4)(x + 5) + 2020

= [(x + 2)(x + 5)][(x + 3)(x + 4)] + 2020

= (x2 + 7x + 20)(x2 + 7x + 12) + 2020

Đặt a = x2 + 7x + 5

Khi đó A = (a + 5)(a + 7) + 2020

= a2 + 16a + 35 + 2020

= a(a + 16) + 2055

Do đó A = (x2 + 7x + 5)(x2 + 7x + 5 + 16) + 2055

= (x2 + 7x + 5)(x2 + 7x + 21) + 2055

Vậy phép chia (x + 2)(x + 3)(x + 4)(x + 5) + 2020 cho x2 + 7x + 5 ta được thương là:

x2 + 7x + 21 và dư 2055.

 
Đánh giá

0

0 đánh giá