Chứng minh: B = n^4 + 64 không phải là số nguyên tố với mọi n thuộc ℤ

320

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 59)

Câu 14: Chứng minh: B = n4 + 64 không phải là số nguyên tố với mọi n thuộc ℤ.

Lời giải:

Ta có: B = n4 + 64 = n4 + 16n2 + 64 – 16n2

= (n2 + 8)2 – (4n)2 = (n2 – 4n + 8)(n2 + 4n + 8)

Suy ra B = n4 + 64 không phải là số nguyên tố với mọi n thuộc Z.

 
Đánh giá

0

0 đánh giá