Tìm tất cả các số nguyên x, y, z thỏa mãn 3x^2 + 6y^2 + 2z^2 + 3y^2z^2 – 18x = 6

389

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 59)

Câu 2: Tìm tất cả các số nguyên x, y, z thỏa mãn 3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6.

Lời giải:

Ta có:

3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6

(3x2 – 18x + 27) + 6y2 + 2z2 + 3y2z2 = 6 + 27

3(x – 3)2 + 6y2 + 2z2 + 3y2z2 = 33                                 (1)

Vì x, y, z nguyên nên z2 3 và 2z2 ≤ 33

Hay |z| ≤ 3

Mà z nguyên

Suy ra z = 0 hoặc z = 3

+) TH1: z = 0

(1)  3(x – 3)2 + 6y2 = 33       

  (x – 3)2 + 2y2 = 11

Suy ra 2y2 ≤ 11

Do đó |y| ≤ 2

y=0y=1

x32=11x32+2=11

  (x – 3)2  + 2 = 11 (vì x nguyên)

  (x – 3)2  = 9 x3=3x3=3x=6x=0

+) TH1: z = 3

(1) 3(x – 3)2 + 6y2 + 2 . 32 + 3y2 . 32 = 33                    

  3(x – 3)2 + 33y2 + 18 = 33

  (x – 3)2 + 11y2 = 5

Suy ra 11y2 ≤ 5

Do đó y = 0

Khi đó  (x – 3)2  = 5 nên không tìm được giá trị x nguyên thỏa mãn phương trình

Vậy phương trình đã cho có nghiệm nguyên (x, y, z) là: (0; 1; 0), (0; –1; 0), (6; 1; 0), (6; –1; 0).

 
Đánh giá

0

0 đánh giá