Chứng minh rằng n^7 – n chia hết cho 7, với mọi n là số nguyên

728

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 58)

Câu 40: Chứng minh rằng n7 n chia hết cho 7, với mọi n là số nguyên.

Lời giải:

Ta có n7 n = n(n6 – 1)

= n(n3 – 1)(n3 + 1)

= n(n – 1)(n2 + n + 1)(n + 1)(n2 – n + 1)

= n(n2 – 1)(n2 + n + 1)(n2 – n + 1)

Nếu n = 7k (k ℤ) thì n 7 khi đó n7 n 7

Nếu n = 7k + 1 (k ℤ) thì n2 – 1 = 49k2 + 14k 7 khi đó n7 n 7

Nếu n = 7k + 2 (k ℤ) thì n2 + n + 1 = 49k2 + 35k + 7 7 khi đó n7 n 7

Nếu n = 7k + 3 (k ℤ) thì n2 – n + 1 = 49k2 + 35k + 7 7 khi đó n7 n 7

Nếu n = 7k + 4 (k ℤ) thì n2 + n + 1 = 49k2 + 35k + 21 7 khi đó n7 n 7

Nếu n = 7k + 5 (k ℤ) thì n2 – n + 1 = 49k2 + 70k + 21 7 khi đó n7 n 7

Nếu n = 7k + 6 (k ℤ) thì n2 – 1 = 49k2 + 84k + 35 7 khi đó n7 n 7

Vậy n7 n chia hết cho 7, với mọi n là số nguyên.

 
Đánh giá

0

0 đánh giá