Từ các chữ số 0; 1; 2; 3; 4; 5; 6, có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau và phải có mặt chữ số 5

239

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 58)

Câu 11: Từ các chữ số 0; 1; 2; 3; 4; 5; 6, có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau và phải có mặt chữ số 5?

Lời giải:

Gọi chữ số cần lập là abcde¯ .

Trường hợp 1: có mặt chữ số 0.

Chọn 3 chữ số còn lại (ngoài hai số 0 và 5) thì có C53=10  cách.

Hoán vị 5 chữ số và loại đi trường hợp a = 0 thì có 5! – 4! cách.

Suy ra ta có tất cả 10.(5! – 4!) = 960 số thỏa mãn trường hợp 1.

Trường hợp 2: không có mặt chữ số 0.

Chọn 4 chữ số còn lại thì có C54=5  cách.

Hoán vị 5 chữ số thì có 5! cách.

Suy ra ta có tất cả 5.5! = 600 số thỏa mãn trường hợp 2.

Vậy ta có tất cả 960 + 600 = 1560 số thỏa mãn yêu cầu bài toán.

 
Đánh giá

0

0 đánh giá