Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4)

1.1 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 58)

Câu 1: Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).

Lời giải:

Xét phương trình f(x) = 0 mx + m – 1 = 0.

Trường hợp 1: m = 0.

Khi đó phương trình f(x) = 0 0.x = 1 (vô nghiệm).

Vì vậy ta loại m = 0.

Trường hợp 2: m ≠ 0.

Phương trình fx=0x=1mm .

Phương trình f(x) = 0 có nghiệm thuộc (3; 4).

1mm>31mm<414mm>015mm<00<m<14m<0m>1515<m<14

So với điều kiện m ≠ 0, ta nhận 15<m<14 .

Vậy 15<m<14  thỏa mãn yêu cầu bài toán.

 
Đánh giá

0

0 đánh giá