Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 5 chữ số khác nhau mà số đó nhất thiết có mặt các chữ số 1, 2, 5

302

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 56)

Câu 36: Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 5 chữ số khác nhau mà số đó nhất thiết có mặt các chữ số 1, 2, 5?

Lời giải:

Số có 5 chữ số khác nhau mà có 1, 2, 5 thì 2 chữ số còn lại lấy từ 4 chữ số 0, 3, 4, 6.

Lấy 2 số trong 4 số có C24  cách, trong đó có 3 trường hợp gồm 0; 3, 0; 4, 0; 6 . 

Ba trường hợp trên giống nhau và có 3.4.4.3.2.1 = 288 số.

Ba trường hợp còn lại ging nhau và có 3.5! = 360 số.

Vậy có tất cả 288 + 360 = 648 số cần tìm.

 
Đánh giá

0

0 đánh giá