Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:
Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 56)
Câu 3: Tìm số tự nhiên n để: n2021 + n2020 + 1 là số nguyên tố.
Lời giải:
Ta có:
n2021 + n2020 + 1
= n2021 ‒ n2 + n2020 ‒ n + n2 + n +1
= n2(n2019 ‒ 1) + n(n2019 ‒ 1) + (n2 + n +1)
= (n2 + n)(n2019 ‒ 1) + (n2 + n +1)
= n(n + 1)(n2019 ‒ 1) + (n2 + n +1) (1)
Để ý rằng, 2019 chia hết cho 3 và 2019 = 3.673
Nên nếu đặt A = n3 thì n2019 = A673
Mặt khác áp dụng hằng đẳng thức sau:
ak ‒ bk = (a ‒ b)(ak‒1 + ak‒2b1 + ak‒3b2 +...+ a1bk‒2 + bk‒1)
Ta có: n2019 ‒ 1 = A673 ‒ 1 = A673 ‒ 1673 = (A ‒ 1)(A672 + A671 + ... + A1 + 1)
⇒ n2019 ‒ 1 ⋮ (A ‒ 1) hay n2019 ‒ 1 ⋮ (n3 ‒ 1)
Mà n3 ‒ 1 = (n ‒ 1)(n2 + n +1) ⇒ n2019 ‒ 1 ⋮ (n2 + n +1) (2)
Từ (1) và (2) ⇒ n2021 + n2020 + 1 ⋮ (n2 + n +1)
Như vậy để n2021 + n2020 + 1 là một số nguyên tố thì có hai trường hợp:
1. n2 + n +1 = 1, trường hợp này không xảy ra do n > 0 (giả thiết)
2. n2021 + n2020 + 1 = n2 + n +1 hay n2020(n + 1) = n(n + 1) ⇒ n(n + 1)(n2019 ‒ 1) = 0
Do n > 0 nên n2019 ‒ 1 = 0 ⇒ n = 1
Thử lại ta có: n2021 + n2020 + 1 = 12021 + 12020 + 1 = 3 là số nguyên tố.
Vậy n = 1 là đáp án cần tìm.
Xem thêm các nội dung khác: