Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:
Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 55)
Câu 9: Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.
Lời giải:
Xét tam giác ABC có M, N lần lượt là trung điểm của AB, AC.
Suy ra MN là đường trung bình.
Do đó MN // BC, hay MN // PH.
Suy ra tứ giác MNPH là hình thang
Xét tam giác ABH vuông tại H có HM là trung tuyến
Suy ra (1)
Xét tam giác ABC có P, N lần lượt là trung điểm của CB, AC
Suy ra PN là đường trung bình
Do đó (2)
Từ (1) và (2) suy ra HM = PN
Xét hình thang MNPH có PN = HM (chứng minh trên)
Suy ra MNPH là hình thang cân (dấu hiệu)
Vậy tứ giác MNPH là hình thang cân.
Xem thêm các nội dung khác: