Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:
Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 55)
Câu 2: Cho hình bình hành ABCD. Lấy điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng ba đường thẳng AC, BD, EF đồng quy.
Lời giải:
Vì ABCD là hình bình hành nên AB // CD, hay AE // CF
Mà AE = CF (giả thiết)
Suy ra AECF là hình bình hành
Do đó hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường
Gọi O là giao điểm của AC và AF (1)
Vì ABCD là hình bình hành
Nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
Mà O là trung điểm AC
Suy ra O là trung điểm của BD và AC (2)
Từ (1) và (2) suy ra ba đường thẳng AC, BD, EF đồng quy
Vậy ba đường thẳng AC, BD, EF đồng quy.
Xem thêm các nội dung khác: