Chứng minh nếu p và 8p^2 + 1 là hai số nguyên tố lẻ thì 8p^2 + 2p + 1 là số nguyên tố

1.1 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 55)

Câu 1: Chứng minh nếu p và 8p2 + 1 là hai số nguyên tố lẻ thì 8p2 + 2p + 1 là số nguyên tố.

Lời giải:

Số tự nhiên p có một trong các dạng:

3k,3k+1,3k+2, với k.

Nếu p = 3k mà p là số nguyên tố lẻ nên p = 3

Khi đó:

8p2 + 1 = 8 . 32 + 1 = 73 là số nguyên tố lẻ;

8p2 + 2p + 1= 8 . 32 + 2 . 3 + 1 = 79 là số nguyên tố.

Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 72k2 + 48k + 9 3 là hợp số nên loại.

Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 72k2 + 96k + 33 3 là hợp số nên loại.

Vậy minh nếu p và 8p2 + 1 là hai số nguyên tố lẻ thì 8p2 + 2p + 1 là số nguyên tố.

 
Đánh giá

0

0 đánh giá