Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:
Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 54)
Câu 11: Có bao nhiêu số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ.
Lời giải:
Gọi số tự nhiên có 3 chữ số phân biệt là
Tổng các chữ số là số lẻ có các trường hợp sau:
TH1: Số tự nhiên có 3 chữ số phân biệt đều là số lẻ
Chọn a, b, c lần lượt có số cách là 5, 4, 3 cách
⇒ có 5.4.3 = 60 cách
TH2: Số tự nhiên có 3 chữ số phân biệt trong đó có 2 chữ số chẵn và 1 chữ số lẻ
Nếu a lẻ thì a có 5 cách chọn
b, c lần lượt có 5, 4 cách chọn
Nếu chữ số lẻ ở hàng chục và hàng đơn vị thì
a có 4 cách chọn
Chữ số chẵn còn lại có 4 cách chọn
Chữ số lẻ có 5 cách chọn
⇒ có 5.5.4 + 2.4.4.5 = 260 cách
Vậy số số tự nhiên có 3 chữ số phân biệt tổng các chữ số là số lẻ là:
60 + 260 = 320 số.
Đáp số: 320 số.
Xem thêm các nội dung khác: