Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n – 1

0.9 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 39)

Câu 31: Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n – 1.

Lời giải:

Giả sử số nguyên tố là p

Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2

p có dạng 2n + 1 (k thuộc ℕ, k > 0)

Xét 2 trường hợp:

+ k chẵn (k = 2n) p = 2k + 1 = 2.2n + 1 = 4n + 1

+ k lẻ (k = 2n – 1) p = 2k + 1 = 2.(2n – 1) + 1 = 4n – 1

Vậy p luôn có dạng 4n + 1 hoặc 4n – 1.

Đánh giá

0

0 đánh giá