Đề thi vào lớp 10 môn Toán chuyên TP Hồ Chí Minh năm 2008-2009
Chỉ 100k mua trọn bộ Đề thi vào lớp 10 môn Toán chuyên TP Hồ Chí Minh năm 2008-2009 có lời giải chi tiết (chỉ 20k cho 1 đề thi bất kì):
B1: Gửi phí vào tài khoản 0711000255837 - NGUYEN THANH TUYEN - Ngân hàng Vietcombank
B2: Nhắn tin tới zalo Vietjack Official - nhấn vào đây để thông báo và nhận giáo án.
Xem thử tài liệu tại đây: Link tài liệu
Sở Giáo dục và Đào tạo .....
Kì thi tuyển sinh vào lớp 10 THPT chuyên
Đề thi môn: Toán
Năm học: ......
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (4 điểm):
a) Tìm m để phương trình x2 + (4m + 1)x + 2(m – 4) = 0 có hai nghiệm x1, x2 thoả
b) Tìm m để hệ bất phương trình có một nghiệm duy nhất.
Câu 2 (4 điểm): Thu gọn các biểu thức sau:
a)
b) (x≥2)
Câu 3 (2 điểm):Cho a, b, c, d là các số nguyên thỏa a ≤ b ≤ c ≤ d và a + d = b + c. Chứng minh rằng:
a) a2 + b2 + c2 + d2 là tổng của ba số chính phương.
b) bc ≥ ad.
Câu 4 (2 điểm):
a) Cho a, b là hai số thực thoả 5a + b = 22. Biết phương trình x2 + ax + b = 0 có hai nghiệm là hai số nguyên dương. Hãy tìm hai nghiệm đó.
b) Cho hai số thực sao cho x + y, x2 + y2, x4 + y4 là các số nguyên. Chứng minh x3 + y3 cũng là các số nguyên.
Câu 5 (3 điểm):): Cho đường tròn (O) đường kính AB. Từ một điểm C thuộc đường tròn (O) kẻ CH vuông góc với AB (C khác A và B; H thuộc AB). Đường tròn tâm C bán kính CH cắt đường tròn (O) tại D và E. Chứng minh DE đi qua trung điểm của CH.
Câu 6 (3 điểm): Cho tam giác ABC đều có cạnh bằng 1. Trên cạnh AC lấy các điểm D, E sao cho . Gọi M là trung điểm của BE và N là điểm trên cạnh BC sao cho BN = BM. Tính tổng diện tích hai tam giác BCE và tam giác BEN.
Câu 7 (2 điểm):Cho a, b là hai số thực sao cho a3 + b3 = 2. Chứng minh 0< a + b ≤ 2.
Xem thêm các đề thi vào lớp 10 môn Toán chuyên hay khác: